49 research outputs found

    Single-Input Five-Output Electronically Tunable Current-Mode Biquad Consisting of Only ZC-CFTAs and Grounded Capacitors

    Get PDF
    This paper presents an electronically tunable current-mode biquadratic filter constructing with four Z-copy current follower transconductance amplifiers (ZC-CFTAs) and only two grounded capacitors. The presented filter can realize all the five standard biquadratic functions simultaneously without requiring any component matching conditions and connecting any relevant output currents. The circuit has one low-impedance input and five high-impedance outputs, resulting in easy cascadability in current-mode. Also, the developed circuit exhibits the advantage of non-interactive electronic control of the natural angular frequency and the quality factor Q along with low incremental active and passive sensitivities. Computer simulation results using PSPICE program are given to confirm the validity of the theoretical prediction and to point out the attractive performance of the circuit

    High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements

    Get PDF
    In this paper, a novel single-input three-output (SITO) second-order multifunction active voltage filter with high-input impedance is proposed. The proposed circuit is based on using the recently reported active building block, namely differential difference current conveyor transconductance amplifier (DDCCTA). It employs one DDCCTA as active element together with one grounded resistor and two grounded capacitors as passive elements. The circuit still maintains the following advantageous features : (i) the simultaneous realization of lowpass, bandpass and highpass responses from the same topology, (ii) no requirements for component matching conditions, (iii) electronic controllability of important filter parameters, (iv) simpler structure due to contains only one DDCCTA and three passive elements, and (v) low sensitivity performance. The non-ideal gain effects of the developed filter are examined and PSPICE simulation results are included using 0.5 um MIETEC CMOS technology parameters

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Symbolic analysis of analog circuits containing voltage mirrors

    Get PDF
    7 páginas, 7 figuras, 2 tablas, 4 imágenes.-- Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.The pathological elements voltage mirror (VM) and current mirror (CM) have shown advantages in analog behavioral modeling and circuit synthesis, where many nullor-mirror equivalences have been explored to design and to transform voltage-mode circuits to current-mode ones and viceversa. However, both the VM and CM have not equivalents to perform automatic symbolic circuit analysis. In this manner, we introduce nullor-equivalents for these pathological elements allowing to include parasitics and to perform only symbolic nodal analysis. The nullor-equivalent of the CM is extended to provide multiple-outpus (MO-CM). Finally, two active filters containing VMs, CMs and MO-CMs are analysed to show the usefulness of the models.This work is supported by: UC-MEXUS and CONACyT under grants CN-09-310 and 48396-Y; by Promep-Mexico under grant UATLX-PTC-088; by Consejeria de Innovacion, Ciencia y Empresa, Junta de Andalucia-Spain TIC-2532; and by the JAE-Doc program of CSIC co-funded by FSE, Spain.Peer reviewe

    Electronically Tunable Multi-Terminal Floating Nullor and Its Applications

    Get PDF
    A realization scheme of an electronically tun- able multi-terminal floating nullor (ET-MTFN) is de- scribed in this paper. The proposed circuit mainly employs a transconductance amplifier, an improved translinear cell, two complementary current mirrors with variable current gain and improved Wilson current mirrors, which provide an electronic tuning of the current gain. The va- lidity of the performance of the scheme is verified through PSPICE simulation results. Example applications employing the proposed ET-MTFN as an active element demonstrate that the circuit properties can be varied by electronic means

    On the Realization of First-Order Current-Mode AP/HP Filter

    Get PDF
    A compact circuit topology for the realization of the current-mode first-order allpass (AP) and highpass (HP) filters is described. The proposed circuit contains a minimum number of components, i.e., eight bipolar transistors and one grounded capacitor. The advantages of this circuit are the use of only grounded capacitor as a passive element, the electronic tunability of its parameters and its potential for low-voltage operation. Some simulation results are also reported, which demonstrate the effectiveness of the proposed circuit. Owing to the pole frequency of the filter circuit is normally dependent on temperature; a low-voltage translinear–based current source circuit for temperature compensation is also suggested
    corecore